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Background and aim 

Human induced pluripotent stem cells (hiPSCs), 

reprogrammed from terminal somatic cells have the capacity 

to differentiate into a variety of tissues. It is, thus, a valuable 

resource in human cell biology research and regenerative 

medicine. In the past decades, several hiPSC lines have been 

produced with varying reprogramming protocol, donor, and 

subsequent cloning optimization. Although all hiPSC lines 

are pluripotent, they display heterogeneity in their capacity 

to differentiate (Yokobayashi et al., 2017). The heterogenous 

differentiation potential is the consequence of both genetic 

and epigenetic factors (Nishizawa et al., 2016).  

Three important types of epigenetic nucleosome 

modifications are histone 3 lysine 4 trimethylation 

(H3K4me3), histone 3 lysine 9 trimethylation (H3K9me3), 

and histone 3 lysine 27 trimethylation (H3K27me3). 

H3K4me3 recruits transcription machinery and is a positive 

transcriptional regulator (Wang et al., 2023); H3K9me3 and 

H3K27me3 promote heterochromatin formation and silence 

nearby genes (Yang et al., 2022,Cai et al., 2021).  

This project will delve into the epigenetic side of the 

phenomenon: through statistical analysis and mathematical 

modelling, we attempt to establish the correlation between 

epigenetic marks and transcriptional differences between 

these cell lines, which will inform about their differentiation 

potential. 

 

Data 

Genome-wide ATAC-seq data, and CUT&TAG data for 

H3K4me3, H3K9me3, H3K27me3, and RNA-seq data in 8 

hiPSC lines (obtained by Stefan Schoenfelder’s group at 

Babraham Institute). All data normalized with respect to the 

median in each dataset (1 = median).  

 

 

 

 

 

Results 

Patterns and trends in H3K9me3 and 

H3K27me3 

Classification of differentially enhanced regions 

(DERs) and differentially expressed genes (DE 

genes). 

While the transcriptome is mostly uniform (Pearson 

correlation >0.95), there are regions in the genomes of these 

cell lines that are differentially enhanced in H3K9me3 and 

H3K27me3 (differentially enhanced regions, or DERs), 

which contribute to heterogeneity between the cell lines. 

These DERs are of great interest and are the subjects of 

subsequent analysis. DERs are characterized by two criteria: 

the maximum signal intensity must be greater than two to 

filter out noise, and the intensity in one cell line must be 

more than twofold greater than in another cell line in at least 

seven pairwise comparisons of the same region on the 

chromosome across all cell lines. The idea is that if the 

readings in a region can be classified into at least two 

groups, then, in at least n−1 pairwise comparisons, a 

significant difference can be observed. Consecutive DERs 

are merged into a single DER. The resolution of the DERs is 

determined by the bin size used to aggregate raw reads. 

Higher resolution captures finer details but also introduces 

more noise to the results; here, we used bin sizes ranging 

from 2 kbp to 100 kbp to balance these needs. 

Non-DERs are regions with intensity greater than two, 

excluding the DERs, and serve as the null population in 

hypothesis tests. 

Previous research in this project had identified differentially 

expressed (DE) genes using the DESeq2 package with a 

significance threshold of p < 0.01 and the >(n−1) count 

criteria (Love et al., 2014). 

H3K9me3 DERs are broader than H3K27me3 

DERs. 

Non-parametric Mann-Whitney U-test rejects the null 

hypothesis in favour of the alternative that H3K9me3 DERs 

are broader at alpha = 0.05 (p ≈ 0).  

 



H3K27me3 DERs relocate away from genes in 

certain cell lines. 

The intensity of H3K27me3 in DERs in cell lines including 

Yoch6 and Sojd3 is significantly greater than that in other 

cell lines (Kruskal-Wallis H test: alpha = 0.05, p ≈ 0). 

However, according to previous research, the intensity of 

H3K27me3 within differentially expressed (DE) genes 

decreases in Yoch6 and Sojd3, which appears contradictory. 

Notably, the cell lines with overall greater H3K27me3 

intensity coincide with those that have a reduced capacity to 

differentiate (Stefan Schoenfelder lab, unpublished results). 

A reasonable hypothesis is that H3K27me3 relocates away 

from DE genes in these cell lines. 

To quantify this phenomenon, we multiplied the intensity by 

the distance of each DER, obtaining a measure of dispersion 

away from genes that can be compared between different 

cell lines. Figure 1 shows the p-values for pairwise 

comparisons of intensity-distance by Mann-Whitney U test 

after Bonferroni correction. Notably, Yoch6, Kucg2, and 

Sojd3 stand out as having significantly greater dispersion 

away from genes.  

 

Figure 1. p-values of Mann-Whitney U-test between each 

cell lines after Bonferroni correction. 

H3K9me3 and H3K27me3 have tendencies toward 

centromeric and telomeric regions. 

To evaluate the relationship between differentially enhanced 

regions (DERs) and structural features of the chromosome, 

we calculated the distance from the DER to the centromere, 

normalizing it to 1. H3K9me3 DERs localize to both the 

centromeric and telomeric regions, while H3K27me3 DERs 

are found only in the telomeric regions (Figure 2.A). The 

repetitive sequences in the centromere and telomere could 

be the cause of significant variability in histone 

modification. However, no apparent correlation was found 

between the intensity or length of the DERs and their 

chromosomal distribution. 

In the non-DERs of H3K9me3, the spread across the 

chromosome is uniform, showing no preference for specific 

regions. Conversely, the non-DERs of H3K27me3 share the 

same pattern as the DERs, localizing toward the telomeric 

regions. 

H3K27me3 DERs associate better with genes than 

H3K9me3 DERs 

Histone methylation influences euchromatin formation and 

transcription machinery recruitment, therefore we are 

interested in whether the DERs correlate with genes. Figure 

2.B shows histograms of the gene coverage fraction in 

H3K9me3 and H3K27me3. Gene coverage is calculated by 

summing the lengths of DER-gene overlap normalized by 

DER lengths. It is an indicator of how many genes are 

covered by a single DER. The histogram displays 

multimodality with peaks at integers 0 and 1, meaning that 

either the DER is entirely covered by a gene, or it is absent 

of genes.  

H3K27me3 DERs localize at genes stronger than H2K9me3 

DERs do. Testing with one-sided Mann-Whitney U-test 

(alpha = 0.05), the above alternative (H3K27me3 DER-

coverage is greater than H3K9me3 DER coverage) was 

accepted with p ≈ 0.  

In comparison, for non-DERs using the same test, both null 

hypotheses were retained (K9: p = 0.3, K27: p = 0.89). 
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Figure 2. A: Histogram of centromeric distance of H3K9me3 DERs (up) and H3K27me3 DERs (down). B: 

Gene coverage histogram of H3K9me3 DERs (up) and H3K27me3 DERs (down).



Building a basic model with RNA-seq data 

Otsu thresholding 

DE genes obtained with DEseq2 are genes differentially 

expressed across the cell lines. Assuming that the genes are 

either expressed or silenced (binary states), the FPKM reads 

of gene mRNA transcripts can be casted into a digital 

format: 1 for expressed or 0 for silenced. This assumption is 

supported by the bimodality in RNA-seq data of each single 

gene across eight different cell lines.  

The Otsu thresholding routine was applied to all DE genes. 

For each single gene the routine calculates the threshold that 

categorizes the eight RNA-seq reads into expressed or 

silenced. 

Classifying K4-K9-K27 space with support vector 

machine (SVM) 

Plotting the trimethylation intensities of eight cell lines at a 

single gene yields Figure 3. By labelling the points with as 

categorized by the Otsu threshold, the dataset can be used to 

train support vector machines (SVM, linear kernel) that 

predicts gene expression. The SVM generates three 

coefficients for H3K4me3, H3K9me3, and H3K27me3, 

producing a hyperplane that separates the space into 

expressed and silenced. The intensities of trimethylations are 

normalized to the (0,1) segment prior to SVM training.  

After SVM training, the scaling factors are multiplied back 

into the coefficients to restore the relationship between the 

absolute intensities of histone modifications. For each gene 

we now have three coefficients that indicate the influence on 

transcription by H3K4me3, H3K9me3, and H3K27me3, see 

Figure 4. From the plot it is evident that H3K9me3 has very 

little impact on the expression of DE genes, H3K27me3 

negatively impacts DE gene expression, and H3K4me3 

promotes gene expression. Applying a manual threshold, the 

DE genes were classified into 4 groups based on their major 

source of influence (Figure 5). 

Our major interest is in group 3 where the expression of DE 

genes is influenced by both H3K4me3 and H3K27me3. 

Column 2 in Figure 6 plots the relationship between 

H3K4me3, H3K9me3, mRNA signal in group 3. Each line 

in the plot consists of eight points for eight cell lines at a 

single gene. The bimodality in K4-K27 plot (bimodality 

coefficient = 0.70) suggests bistability under certain 

parameter conditions.  

 

Figure 3. x: H3K4me3 intensity; y: H3K9me3 intensity; z: 

H3K27me3 intensity (all normalised to the (0,1) segement). 

Yellow for expressed genes; purple for silenced genes. The 

hyperplane denotes the boundary of expression/silencing of 

the gene. 

 

 

Figure 4: Scatter plot of DE genes plotted using coefficients 

calculated with SVM. Most effects are from H3K4me3 

(positive coefficients) and H3K27me3 (negative 

coefficients). 



 

Figure 5. Intensity plot of each cell line in each gene. Blue 

points are silenced, red points are expressed. Categorized 

into 4 clusters based on SVM.  

 

Figure 6. Relationship between H3K4me3, H3K27me3 and 

gene expression level in Group 3. Column 1 is model 

output; column 2 is actual data, each line represents 8 cell 

lines of a single gene. 

 

Figure 7. Relationship between H3K4me3, H3K27me3 and 

gene expression level in Group 1. Column 1 is model 

output; column 2 is actual data, each line represents 8 cell 

lines of a single gene. 

 

Three-State Model  

The SVM analysis of histone modifications suggests a three-

state model with positive read-write feedback to allow the 

existence of two equilibrium points. 

 

𝑑[𝐾4]

𝑑𝑡
= 𝑟𝑚𝑒4[𝑢𝑛𝑚] + 𝑘𝑚𝑒4𝛼[𝐾4][𝑢𝑛𝑚] − 𝑟𝑑𝑚4 [𝐾4]    Eq1 

𝑑[𝐾27]

𝑑𝑡
=  𝑟𝑚𝑒27[𝑢𝑛𝑚] +

𝑘𝑚𝑒27 [𝑢𝑛𝑚] [𝐾27] −  𝑟𝑑𝑚27 [𝐾27] −  𝑘𝑑𝑚27𝛼[𝐾4][𝐾27] Eq2 

𝑑[𝑚𝑅𝑁𝐴]

𝑑𝑡
= 𝛼[𝐾4] − 𝛽[𝑚𝑅𝑁𝐴]    Eq3 

1 = [𝐾4] + [𝑢𝑛𝑚] + [𝐾27]    Eq4 

 



The model is based on the knowledge that H3K4me3, co-

transcriptionally, promotes its own deposition (Woo et al., 

2017) and H3K27me3 have a positive feedback loop 

through PRC2 (Uckelmann & Davidovich, 2021). Eq1 

describes the rate of change in H3K4me3, with two linear 

terms for background conversion between H3K4me3 and 

non-methylated state and a non-linear term to account for 

the feedback through transcription. Eq2 describes the rate of 

change in H3K27me3, with two linear terms for background 

rates and two non-linear terms for PRC2 feedback and 

H3K4me3 regulation. Assuming exclusivity between the 

states, the three states are summed to one to address the 

fixed number of nucleosomes. 

The table below explains the parameters in the model. The 

background demethylation rate of H3K4me3 and the ratio 

between H3K27me3 feedback methylation and background 

demethylation sets the equilibria of the system. When 

H3K27me3 read-write methylation rate decreases, the 

system falls from being bistable to monostable in high K4.  

 

Parameters  Bistable  Monostable 

in high K4 

kme4 K4 feedback 

methylation 

rate 

  

rme4 K4 

background 

methylation 

rate (noise) 

0~1 0~1 

rdm4 K4 

background 

demethylation 

rate 

  

kme27 K27 feedback 

methylation 

rate 

  

rme27 K27 

background 

methylation 

rate (noise) 

0~0.1 0~0.1 

rdm27 K27 

background 

demethylation 

rate 

  

kdm27 K27 feedback 

demethylation 

rate 

  

alpha Transcription 

rate scaler 

  

beta mRNA 

degradation 

rate 

  

kme4*alpha  20 20 

alpha*kdm27/rdm27  5 5 

rdm4  8 x < 20 

kme27/rdm27  2.5 < x < 10 0.5 

 

Column 1 of Figure 6 shows Group 3 data points generated 

from the model with varying kme27/rdm27 and noise in the 

background. The predicted data resembles the actual data 

and managed to recapitulate scattering along the H3K4me3 

axis from noise. However the model failed to capture noise 

in H3K27me3 because the transcription equation is 

oversimplified and does not have a H3K27me3 term. This is 

simplification is valid as H3K4me3 and H3K27me3 are 

exclusive of each other, but has the above downsides.  

Figure 7 shows Group 1 of DE genes where expression is 

influenced by H3K4me3 only. According to the model, this 

is when feedback strength of H3K27me3 methylation is 

weak and the system becomes monostable: only one 

equilibrium with high H3K4me3 and low H3K27me3. The 

boundary conditions are visualized in Figure 8. We can see 

that the model recapitulated the linear relationship between 

H3K4me3 and gene expression which was revealed through 

SMV analysis. 

 

 

Figure 8. Boundary parameter conditions when the system 

falls into monostable from bistable. The key parameters are 

feedback K27 methylation rate / background K27 

demethylation rate (x-axis) and K4 background 

demethylation rate (y-axis). 

 

Conclusion and future directions 

In this project, we analysed patterns and trends in H3K9me3 

and H3K27me3, the observation of H3K27me3 relocating 

outside genes is insightful for further exploration of 

H3K27me3 forming mechanism. This difference in spatial 

distribution could be an indicator of hiPSC pluripotency. 

The SVM analysis of histone modification and gene 

expression successfully classified the genes by their 

regulatory mechanism. By inspecting this classification we 

can better understand the relationships between histone 

marks and transcription, and develop more detailed 

hypotheses regarding its misregulation. The model is simple 

and lack many of the finer details in the dataset. However, it 

suggests the possibility of a bistable system at the DE genes. 

This hypothesis could be validated in the future with single-

cell chromatin modification and RNA-seq data. 

 

Value of studentship 

Research group: The student undertook a genomic data 

analysis project related to a collaboration between the 

Howard lab and Stefan Schoenfelder (Babraham Institute). 

He drove the project forward in two main aspects: the in-

depth analysis of genomic regions differentially enriched in 

H3K9me3, and the classification and modelling of how 

bivalent histone marks (H3K27me3 and H3K4me3) regulate 

transcription in the different targets. Altogether, the overall 

research project was significantly developed during Lihan’s 

studentship. The Howard group thanks the Biochemical 

Society for their support. 

Student: Through the studentship, I improved my coding 

skills and learned common mathematical biology strategies 



in dealing with large genomic data. Apart from becoming 

more confident in answering biological questions with 

statistic and mathematical tools, I realized the importance of 

finding and asking questions in research. I also developed 

my communication skills by presenting results and attending 

talks and symposiums with the group. The chance of being 

immersed in an academic setting helped me acquire research 

mindset and gain a clearer image of what it’s like to conduct 

research, which will be extremely useful in my future career. 
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